
3. daisy:320 (Fithen, William L.)

5. daisy:79 (Principles)

6. daisy:76 (Coding Rules)

8. daisy:344 (Assume that Human Behavior Will Introduce Vulnerabilities into Your System)

9. daisy:332 (Follow the Rules Regarding Concurrency Management)

10. daisy:333 (Design Configuration Subsystems Correctly and Distribute Safe Default Configurations)

11. daisy:336 (Carefully Study Other Systems Before Incorporating Them into Your System)

12. daisy:337 (If Emulation of Another System Is Necessary, Ensure that It Is as Correct and Complete as Possible)

13. daisy:338 (Handle All Errors Safely)

14. daisy:331 (Ensure that Input Is Properly Canonicalized)

15. daisy:339 (Be Suspicious about Trusting Unauthenticated External Representation of Internal Data Structures)

16. daisy:340 (Do Not Use the "%n" Format String Specifier)

17. daisy:341 (Treat the Entire Inherited Process Context as Unvalidated Input)

18. daisy:342 (Never Use Unvalidated Input as Part of a Directive to any Internal Component)

Guidelines Overview
William L. Fithen, Software Engineering Institute [vita3]

Copyright © 2005 Carnegie Mellon University

2005-10-03

All systems have vulnerabilities, either in the technology from which they are constructed or in the
behaviors of the people who use them.

Introduction

The Build Security In Guidelines is a taxonomy of mid-level engineering concerns that were derived
from the vulnerability database accumulated by the CERT® Coordination Center over its 15-year history.
In general, these concerns are less abstract than the Build Security In Principles5—which are intended to
be enduring top-level concerns—and more abstract than the Build Security In Coding Rules6—which are
intended to be precise, specific implementation advice.

The Taxonomy
1. Assume that Human Behavior Will Introduce Vulnerabilities into Your System8

2. Assume that Technology Will Contain Vulnerabilities

1. Follow the Rules Regarding Concurrency Management9

2. Design Configuration Subsystems Correctly and Distribute Safe Default Configurations10

3. Carefully Study Other Systems Before Incorporating Them into Your System Through
Delegation11

4. If Emulation of Another System Is Necessary, Ensure that It Is as Correct and Complete as
Possible12

5. Handle All Errors Safely13

6. Validate All Input as Precisely as Possible

1. Ensure that Input Is Properly Canonicalized14

2. Be Suspicious about Trusting Unauthenticated External Representation of Internal Data
Structures15

3. Do Not Use the "%n" Format String Specifier16

4. Treat the Entire Inherited Process Context as Unvalidated Input17

5. Never Use Unvalidated Input as Part of a Directive to any Internal Component18

Guidelines Overview 1
ID: 324 | Versie: 6 | Datum: 12/04/06 16:57:16

daisy:320
daisy:79
daisy:76
daisy:344
daisy:332
daisy:333
daisy:336
daisy:336
daisy:337
daisy:337
daisy:338
daisy:331
daisy:339
daisy:339
daisy:340
daisy:341
daisy:342

19. daisy:321 (Use Authentication Mechanisms, Where Appropriate, Correctly)

20. daisy:322 (Use Authorization Mechanisms Correctly)

21. daisy:334 (Use Well-Known Cryptography Appropriately and Correctly)

22. daisy:323 (Ensure that the Bounds of No Memory Region Are Violated)

23. daisy:335 (Clear Discarded Storage that Contained Secrets and Do Not Read Uninitialized Storage)

24. daisy:343 (Do Not Perform Arithmetic with Unvalidated Input)

7. Use All Security Mechanisms Correctly

1. Use Authentication Mechanisms, Where Appropriate, Correctly19

2. Use Authorization Mechanisms Correctly20

3. Use Well-Known Cryptography Appropriately and Correctly21

8. Do Not Allow Your System to Ever Use or Depend on Language Behaviors that Are
"Undefined"

1. Ensure that the Bounds of No Memory Region Are Violated22

2. Clear Discarded Storage that Contained Secrets and Do Not Read Uninitialized Storage23

3. Do Not Perform Arithmetic with Unvalidated Input24

Description

In every phase of a system's development, under particular conditions, features added—or omitted—can
introduce security vulnerabilities. To produce a safe and secure system, the competent,
security-conscious engineer must

• learn the meaning of software assurance and be knowledgeable in the practice of supporting
techniques,

• recognize the security implications of all functional requirements,

• recognize the security implications of missing requirements,

• recognize emergent behaviors in the system that have security implications,

• recognize the implications of an evolving deployment environment on the system,

• translate those implications into additional system requirements,

• design features to meet those requirements,

• recognize the security implications of the included and omitted features,

• add, modify, or remove features accordingly,

• recognize the security implications of the system's implementation,

• correct any defects in the implementation,

• understand how to test the system for compliance with security requirements, and

• be able to use software assurance techniques to demonstrate the assurance attributes of the system.

A failure in any of these, and more, can leave the system with security vulnerabilities.

SEI Copyright
Carnegie Mellon University SEI-authored documents are sponsored by the U.S. Department of Defense
under Contract FA8721-05-C-0003. Carnegie Mellon University retains copyrights in all material
produced under this contract. The U.S. Government retains a non-exclusive, royalty-free license to

Guidelines Overview 2
ID: 324 | Versie: 6 | Datum: 12/04/06 16:57:16

daisy:321
daisy:322
daisy:334
daisy:323
daisy:335
daisy:343

1. http://www.sei.cmu.edu/about/legal-permissions.html

publish or reproduce these documents, or allow others to do so, for U.S. Government purposes only
pursuant to the copyright license under the contract clause at 252.227-7013.

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For inquiries regarding reproducing this document or preparing derivative works of this document for
external and commercial use, including information about “Fair Use,” see the Permissions1 page on the
SEI web site. If you do not find the copyright information you need on this web site, please consult your
legal counsel for advice.

Velden

Naam Waarde

Copyright Holder SEI

Velden

Naam Waarde

is-content-area-overview true

Content Areas Knowledge/Guidelines

SDLC Relevance Implementation

Workflow State Publishable

Guidelines Overview 3
ID: 324 | Versie: 6 | Datum: 12/04/06 16:57:16

http://www.sei.cmu.edu/about/legal-permissions.html

